

Energy Efficiency Services Limited

Scaling Up of Investments through ESCO Mechanism in MSME Clusters by Deploying Standard Energy Efficient Technologies (SEET)

ederation of Indian Chambers of Commerce and Industry (FICCI) in association with Energy Efficiency Services Ltd. (EESL) is implementing a project funded by Global Green Growth Institute (GGGI) titled "Scaling Up of Investments through ESCO Mechanism in MSME Clusters by Deploying Standard Energy Efficient Technologies (SEET)". The project activities will be executed in 3 MSME clusters of Haryana (a) Rice Mill Cluster in Karnal (b) Textile Cluster in Panipat (c) Mixed Industry Cluster in Kundli, Sonipat

The overall project objective is to create an eco-system to accelerate adoption of Energy Efficient (EE) Technologies by MSMEs through innovative financing mechanism supported by ESCOs, Financial Institutes (FIs); deployment of Standard Energy Efficient Technologies (SEET) already identified under the EESL UNIDO MoMSME (GEF-5) Project in the targeted clusters; aggregation of demand of EE Technologies and developing suitable IT Tools for improving efficacy of the program implementation at large scale.

Brief Note on Technology

Name of the Technology:	Low-Grade Waste Heat Recovery		
Expected Type of Major Energy Saving	☐ Electrical ☐ Thermal		
Old Technology to be replaced	The dyeing process requires water to be heated at a temperature of 85° C to 130° C. This temperature variation depends on the type of fabric being processed. The average temperature of water needed for dyeing process in Varanasi cluster is 95° C. Once the process is completed, this hot water is flushed out of the dyeing machine and is sent to effluent treatment plant for treatment. At the effluent treatment plant, this water is collected and is retained for $6-8$ hours before it is treated. This retention time is for allowing the water to cool down to a temperature of 45° C - 50° C. In the existing system, the input water to the dyeing machine is at ambient temperature. This would mean that the temperature of water would vary from 20° C to 35° C. In different stages of dyeing process, the temperature of hot water required varies between 60° C to 130° C.		
Brief about the New Technology	Installation of localized/ decentralized heat exchangers at each machine/ process area to recover the heat from hot water/condensate for heating up the water for next batch/ cycle or boiler feed water. This new system can raise the temperature of input water from 30°C at present to up to 55°C, thus, reducing the heating requirement of the system and corresponding fuel consumption		

Success Story: Demonstration in MSME Clusters

Year of demonstration	:	
Location of MSME Cluster	: Vai	ranasi
Type of Cluster		rtile
Name of the MSME Unit	:	
Amount of fuel required to generate required steam (Baseline)	: 30	4.68 Kg/ day
Amount of fuel required to generate required steam (Post Implementation)		3.86 Kg/ day
Annual fuel Saving		,246 Kg/year
Annual Monetary Saving		. 1,81,230
Investment	: Rs	5,00,000
Simple Payback		Months
Warranty of the New Technology		

Benefits Incurred from the Project

- Reduction in production time
- Reduction in fuel consumption
 - Reduction in retention time at effluent treatment plant

Availability of Technology Locally	⊠ Yes □ No	·	
Probable Technology Providers	Radiant GroupMark EngineersAlfa Laval India Private Limited	https://www.radiantengineers.com/ https://www.heatexchangerindia.net/ https://www.alfalaval.in/	
Supply & Implementation	Typical Delivery time:	3-5 Weeks	
	Ease of Implementation:	☐ High	
	Is unit shut-down required:	☐ Yes ☐ No ☐ Partial	
	Implementation by:	Jointly by Vendor & Plant, Packaged Product	
	Buy-back Option:	No	
Financing Options & Models	☑ Self-Financing ☑ Private ES	CO ⊠ EESL ⊠ Local Bank	

WAY FORWARD

Expression of Interest (EoI):

The MSME Unit shall submit the Eol as per the format to FICCI duly signed by the plant authority / authorized representative

Baseline Study:

FICCI shall conduct the baseline study "Free of cost". The study consists of collection of relevant data from the industry and few technical measurements. The baseline study may take maximum "One Day".

Selection of ESCOs/ Technology Provider:

To be indicated later

Project Stakeholders

MSME
The growth engine of New India

EESL

- · National Institution- Super ESCO
- Create ESCO market for self or private ESCO

ESCOs & FIs

- Project Implementer (Tech & Service)
- Financing
- Financial Risk Guarantee

Cluster MSME Units

- · Primary beneficiary- Host units
- · Project Implementation Site

GGGI

- TA support
- Trusted advisor to EESL
- Capacity Building & Hand holding

For further information, please contact:

Federation of Indian Chambers of Commerce and Industry (FICCI)

Mr. Surender Kumar Verma/ Joint Director Mr. Pushpendra Nayak/ Joint Director

Add: Federation House, 1, Tansen Marg,

New Delhi 110001, India

Email: surender.verma@ficci.com;

pushpendra.nayak@ficci.com

Mob: + 91 9818186253 (S K Verma) +91 9313636244 (P Nayak) Global Green Growth Institute (GGGI)

Ms. Neha Sharma Energy Specialist

Add: M-6, Third Floor, Aurobindo Marg, Haus Khas, New

Delhi - 110016, India

Email: neha.sharma@gggi.org

Energy Efficiency Services Limited (EESL)

Mr. Amit Semwal Technical Expert

Add: 5th & 6th Floor, Core - 3, Scope Complex, Lodhi Road, New Delhi - 110003

Email: asemwal@eesl.co.in